Role of Components in the Formation of Self-microemulsifying Drug Delivery Systems
نویسندگان
چکیده
Pharmaceutical research is focused in designing novel drug delivery systems to improve the bioavailability of poorly water soluble drugs. Self-microemulsifying drug delivery systems, one among the lipid-based dosage forms were proven to be promising in improving the oral bioavailability of such drugs by enhancing solubility, permeability and avoiding first-pass metabolism via enhanced lymphatic transport. Further, they have been successful in avoiding both inter and intra individual variations as well as the dose disproportionality. Aqueous insoluble drugs, in general, show greater solubility in lipid based excipients, and hence they are formulated as lipid based drug delivery systems. The extent of solubility of a hydrophobic drug in lipid excipients i.e. oil, surfactant and co-surfactant (components of self-microemulsifying drug delivery systems) greatly affects the drug loading and in producing stable self-microemulsifying drug delivery systems. The present review highlighted the influence of physicochemical factors and structural features of the hydrophobic drug on its solubility in lipid excipients and an attempt was made to explore the role of each component of self-microemulsifying drug delivery systems in the formation of stable microemulsion upon dilution.
منابع مشابه
Solid Sirolimus Self-microemulsifying Drug Delivery System: Development and Evaluation of Tablets with Sustained Release Property
The clinical application of sirolimus (SRL) as an immunosuppressive agent is largely hampered by its narrow therapeutic range. This study focused on developing SRL tablets with a sustained release profile for better safety. SRL was highly water insoluble and its solubility has been efficiently enhanced by preparing self-microemulsifying drug delivery system (SMEDDS). The SRL-SMEDDS was physical...
متن کاملSolid Sirolimus Self-microemulsifying Drug Delivery System: Development and Evaluation of Tablets with Sustained Release Property
The clinical application of sirolimus (SRL) as an immunosuppressive agent is largely hampered by its narrow therapeutic range. This study focused on developing SRL tablets with a sustained release profile for better safety. SRL was highly water insoluble and its solubility has been efficiently enhanced by preparing self-microemulsifying drug delivery system (SMEDDS). The SRL-SMEDDS was physical...
متن کاملAnti-Diabetic Activity of Self-Microemulsifying Drug Delivery Systems from Bay Leaves (Eugenia polyantha Wight) with Virgin Coconut Oil as A Carrier
Insulin resistance is caused by the inability of target tissues to respond to insulin. Bay leaf (Eugenia polyantha Wight) extract has been used for the treatment of insulin-resistant type-2 diabetes mellitus (IRDM), but it has low solubility and bioavailability. To overcome these problems, chloroform extract of bay leaves was formulated into a self-microemulsifying drug delivery system (SMEDDS)...
متن کاملEvaluation of Carbamazepine (CBZ) Supersaturatable Self-Microemulsifying (S-SMEDDS) Formulation In-vitro and In-vivo
The supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) represents a new thermodynamically stable formulation approach wherein it is designed to contain a reduced amount of surfactant and a water-soluble polymer (precipitation inhibitor or supersaturated promoter) to prevent precipitation of the drug by generating and maintaining a supersaturated state in-vivo. The supersatur...
متن کاملEvaluation of Carbamazepine (CBZ) Supersaturatable Self-Microemulsifying (S-SMEDDS) Formulation In-vitro and In-vivo
The supersaturatable self-microemulsifying drug delivery system (S-SMEDDS) represents a new thermodynamically stable formulation approach wherein it is designed to contain a reduced amount of surfactant and a water-soluble polymer (precipitation inhibitor or supersaturated promoter) to prevent precipitation of the drug by generating and maintaining a supersaturated state in-vivo. The supersatur...
متن کامل